x=(6x^2-4x-15x-10)-(3x^2-15x-9)

Simple and best practice solution for x=(6x^2-4x-15x-10)-(3x^2-15x-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(6x^2-4x-15x-10)-(3x^2-15x-9) equation:



x=(6x^2-4x-15x-10)-(3x^2-15x-9)
We move all terms to the left:
x-((6x^2-4x-15x-10)-(3x^2-15x-9))=0
We calculate terms in parentheses: -((6x^2-4x-15x-10)-(3x^2-15x-9)), so:
(6x^2-4x-15x-10)-(3x^2-15x-9)
We get rid of parentheses
6x^2-3x^2-4x-15x+15x-10+9
We add all the numbers together, and all the variables
3x^2-4x-1
Back to the equation:
-(3x^2-4x-1)
We get rid of parentheses
-3x^2+x+4x+1=0
We add all the numbers together, and all the variables
-3x^2+5x+1=0
a = -3; b = 5; c = +1;
Δ = b2-4ac
Δ = 52-4·(-3)·1
Δ = 37
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{37}}{2*-3}=\frac{-5-\sqrt{37}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{37}}{2*-3}=\frac{-5+\sqrt{37}}{-6} $

See similar equations:

| 2(x+3)+4(2x-7)=58 | | 35/w=5 | | 4(x=3)=3x-3 | | 3x+45=3x+45 | | 4p-20=8p | | 4{9x+2}=152 | | 120+13m=315 | | 625=30x-10x+5x-2+2 | | 19-16w=-19+5-13w | | 7+8c=9c | | .0013(.16-x)=x^2+.16x | | 28n-105=315 | | 3-4x=-3+8x | | -z+10=-8z-10+5z | | 1.3x10^-3(.16-x)=x^2+.16x | | x+43=14x+4 | | 4x-2(3x+1)=3(2x-1)-4x+1 | | -6(x+5)+10=-98 | | 2y(3+4y)=0 | | 10+w=-4w | | 3f-8=5f-10 | | 2x(3+4x)=0 | | 4h=6+10h | | (7x^2+8x-5)+(9x^2-9x)=0 | | 250/2=x/3 | | A=3x+x² | | 10x-7x+20x+12+24=174 | | 3f=4f+8 | | 6-7x=8-12x | | 3(2x–1)+4x=–2x+5 | | 1/2(4x+6)=-6x | | 37=3+4{x+6) |

Equations solver categories